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Abstract

Stocking (1989) discovered a problem with the LOGIST estimation

procedure. The automatic procedure in this program produced different item

parameter estimates when the true item discriminations were used as starting

values for the iteration procedure than when the default starting value of one

for the item discriminations was used. When a straight run to convergence was

performed, the different initial starting values converged to the same item

parameter estimates.

This study investigated several methods for improving the automatic

procedure. When these methods failel to give the improvement necessary,

several methods were tried to obtain the same results as the run to

convergence in a shorter amount of computer time. A method was devised that

takes much less time and gives nearly as good, and in some cases better,

estimates as estimates obtained from running to convergence. This method

involves adding a step to get better initial item parameter estimates for the

automatic procedure. In this step, the abilities are grouped very coarsely

and the item parameters and the grouped abilities are estimated iteratively,

alternating back and forth between items and abilities until the maximum

difference between the estimated item characteristic curves is less than some

criterion.

The new procedure gives item parameter stimates that are closer to the

true values than the current 4-step method does. However, there is a definite

nonlinear relationship between the estimated item parameters for the two

methods after the parameters have been linearly transformed to the same scale.

Consequently, in an ongoing series of calibrations, switching to this



Improvements to LOGIST

3

procedure from the old procedure will produce a discontinuity in the perameter

estimates in the same manner as would be caused by switching from LOGIST to

BILOG.

The effects of putting a beta prior on c were also investigated. The

results were not conclusive. An option to put a beta prior on c was added to

the program.

This new method has been incorporated into a new version of LOGIST

called LOGIST7.
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Introduction

The computer program, LOGIST (Wingersky, Patrick and Lord, 1988)

estimates the item parameters and the examinee abilities for Birnbaum's 3-

parameter logistic item response theory model using Newton's method for

solving the joint maximum likelihood equations. This is not an easy

estimation problem. Newton's method requires some initial starting values for

the parameters and iteratively solves for corrections to these values to

obtain the solution to the joint likelihood equations. In this problem there

are N+3n unknowns, where N is the number of examinees and n is the number of

items. To avoid inverting an N+3n matrix, the procedure is broken into stages

with each stage consisting of two parts. In the first part, the item

parameters are held fixed and new abilities are estimated. In the second

part, the abilities are held fixed and new item parameters estimated.

Originally, the program did a straight run to convergence, where the stages

were repeated until some convergence criterion was met. This was a very slow

procedure that sometimes failed to converge. Over a period of ten years, the

procedure was refined until an estimation procedure, called the automatic 4-

step procedure, was finalized in 1976.

In a research study in 1989, Martha Stocking discovered a problem with

this procedure (Stocking, 1989). For four sets of artificial data, the

program produced different item parameter estimates when the true item

discriminations were used as starting values than when the default starting

value of one was used. However, when the original run to convergence

procedure was used, the two different sets of starting values converged to the

same parameter estimates. This paper explores several methods of correcting
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this problem without resurrecting the problems that the 4-step procedure was

designed to prevent.

The methods tried are

1. Computing the initial a parameter estimates from the conventional

item statistics, the r biserial and the proportion correct.

2. Running the 4-step estimation procedure twice, for eight steps.

3. Running the 4-step estimation procedure with a prior on the item

discrimination parameter.

4. Running the estimation procedure to convergence with a prior on the

item discrimination parameter.

5. Running the estimation procedure to convergence but speeding the

convergence by extrapolating the item parameter estimates.

6 and 7. Grouping the abilities for a short initial run to a loose

convergence criterion to get initial item parameter estimates, and

then running the 4-step procedure. Two methods of grouping were

triea.

These seven new methods plus the current automatic 4-step procedure and the

original run to convergence method were evaluated using artificial data.

Another issue that has concerned users of LOGIST is the way the program

estimates the lower asymptote parameter when the item response function

becomes asymptotic in a region of the ability distribution where there are few

or no examinees. Occasionally when a group of items is calibrated in two

separate LOGIST runs, each run containing other items, some lower asymptotes

will be fixed at a common c value in one run but will be estimated in the

other run. Although in both runs the estimated item response function will
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usually fit the data well, the item parameter estimates are sometimes quite

different. In addition, the estimated common c may be different for the two

runs because the group of items used to estimate the common c will be

different. ..his study also explored, using artificial and real data, whether

a prior on the c's improves the consistency of the item parameter estimates

for the items calibrated in two different LOGIST runs. Putting a prior on c

is an eighth new method of estimating the parameters.

The Three Parameter Logistic Model

The item response model used by LOGIST is the Birnbaum three-parameter

logistic, (3-PL), model. For a dichotomous item, the item response function,

IRF, is the probability of a correct response to an item and is a function of

the examinee's ability, 0 , and three item parameters describing the item.

The formula for the probability, Pi(0) , is

Pi (e) =c1+ (1-ci) / (1+e- 1.7asle-bi))

where

al is the item discrimination index which is proportional to the

slope of Pi(0) at the point of inflection.

bi is the item difficulty which is the point of inflection on the

metric.

ci is the lower asymptote of Pi(0) .

(1)
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Development of the Current 4-Step Estimation Procedure

This 3-PL model has one parameter per examinee and three parameters per

item, for a total of N + 3n parameters where N is the number of examinees and

n is the number of items. Using joint maximum likelihood, LOGIST estimates

the item and examinee parameters that simultaneously maximize the joint

likelihood function modified for omits

L= Ti Ii P (8k) vaQi (ek) (1-vik)
k -1 1-1

(2)

where vik is 0 if item i was answered incorrectly by examinee k, 1 if answered

correctly, and 1/A if omitted. A is the number of response alternatives.

nk is the number of items that examinee k reached. Since the likelihood

function modified for omits is no longer strictly a likelihood function in the

usual sense, it will be referred to hereafter as the criterion function. (It

can, however, be described as a "limited-information likelihood function"

which inherits properties associated with likelihood functions; see Mislevy

and Wu, 1988). The parameters are estimated by setting the first derivatives

of the log of the criterion function with respect to the unknown parameters to

zero and solving these equations using Newton's method. Newton's method

requires some initial starting values for the parameters and iteratively

corrects these values to obtain the solution to the joint likelihoi

equations. To solve for the corrections to all of these unknowns at once

would require inverting an N + 3n matrix. Since this is beyond the capacity

of most computers, solving for the corrections is split into two parts. one

part solves for the corrections to the ability estimates. The other part

solves for the corrections to the item parameter estimates. These two parts

lu
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together are called a stage. In a straight run to convergence, stages are

repeated until the percent change in the criterion function between two

successive stages is less than a user specified criterion. The solution has

two indeterminant values, the origin and scale of the ability metric. LOGIST

handles this by standardizing the abilities to a robust mean of zero and a

standard deviation of one. The robust mean and standard deviation are

computed using Tukey's biweight method. (Mosteller & Tukey, 1977). The

standardization is done between the ability estimation part and the item

estimation part.

A lot of fine tuning was required to overcome some of the problems

encountered with this procedure. One major problem was that, for some data, a

few of the a's would tend towards infinity. To prevent this, an upper bound

was placed on the a's. When the abilities were rescaled, this upper limit on

the a's also had to be rescaled in the same way as the a's were rescaled to

avoid a decrease in the criterion function when the rescaled a's at the

maximum tried to exceed the maximum and were rear,: to the maximum. To

understand how this can create problems, suppose the procedure is nearly

converged with some a's at the upper limit. When the abilities are estimated,

the items with a at the maximum will be fitted better if the abilities are a

little more spread out. The standardization then pulls the abilities back in,

but also raises the maximum a. Since the a's at the maximum want to be higher

anyway, they are becoming higher by this effect on the abilities. The

criterion function is increasing, but very slowly. If there are several a's

at the maximum, the percent change in the criterion between successive s'ages

can take a long time to become less than the convergence criterion.
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Meanwhile, the a's at the maximum are increasing to a higher value than is

wanted or reasonable.

To control this problem, Frederic Lord devised what has been called the

automatic, or 4-step, procedure used in LOGIST since 1976. In this procedure,

the a's and the abilities only interact twice. In step 1, the a's and c's are

held fixed, while the abilities and b's are estimated until the percent change

in the criterion function between two successive stages is less than a loose

convergence criterion. In step 2, the abilities are held fixed, and the a's,

b's, and c's are estimated. In the third step, again the a's and c's are held

fixed, and the abilities and b's are estimated. In the fourth step, the

abilities are again held fixed, and the item parameters are estimated. The

convergence criterion is reduced for each step, starting with 200% for step 1

to .2% for step 4. In steps 1 and 3, the robust standardization is used. In

steps 2 and 4, the standardization sets a truncated mean and standard

deviation of the abilities to zero and one respectively. This method was

tried on some artificial data and produced acceptable results. The important

point of this procedure is that the abilities and the a's only interact twice.

The a's aren't given a chance to increase without limit and the maximum a is

not changed by the standardization. The initial a's are set to a constant.

Different starting values for the constant converged to the same final

parameter estimates.

This method seemed satisfactory until the Stocking study found problems

using some extreme datasets. For some of these datasets, the 4-step procedure

converged to different parameter estimates depending upon different starting

values for the item parameters. In particular, nhe discovered that setting
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the initial a's to the true values gave different and better results than

using the default value of one for all of the a's. Since LOGIST isn't run to

convergence, it is not surprising that starting at the true values gives

better results. However, when LOGIST was run to convergence, the parameter

estimates obtained with the initial a's set to the true a's agreed with the

parameter estimates obtained with the initial a's set to a constant. The

difference between the estimates for the automatic procedure with the default

starting value for the a's and the estimates for the run to convergence is

sufficient to warrant investigating ways to improve the current LOGIST

procedure.

Another problem with the estimation procedure has been the difficulty of

estimating the lower asymptote, c, for easy items or not very discriminating

items where c poorly determined because there are few to no examinees in

the region where the IRF becomes asymptotic. In the development of LOGIST,

several methods were tried to obtain reasonable estimates of c for these

items. The method implemented was to fix the c's at a common c value for

items where b-(2/a) is less than some cut-off criterion and estimate a common

c for all items with c fixed. The value of b-(2/a) is the ability where the

item response function approaches the lower asymptote. The common c value is

estimated using Newton's method but only in the second step of the 4-step

estimation procedure. Thus the common c value depends on the other items in

the run that had their c's fixed at the common value. There are two problems

with this procedure that are noticeable when two separate calibrations have

items in ,ommon and a comparison is made of the estimated parameters for the

common items. The problems are: 1) the common c value depends on the other
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items fixed at the common value and may be quite different for two different

runs; 2) the criterion value for determining whether c is fixed or not

creates a discontinuity. In one run an item may have its c fixed, and in

another, because the b-(2/a) happens to be slightly higher, the c may be

estimated for this item. The fit of the item response curve to the data may

be approximately the same in t.11 cases although the parameter estimates may

differ.

Methods

Seven methods were tried to improve the LOGIST 4-step procedure results

without the expense of running to convergence. These methods are outlined in

the introduction on page 5. The first three methods tried to improve the

automatic procedure. These methods were: 1) computing the initial a parameter

estimates from the conventional item statistics; 2) running the four step

procedure for eight steps; and 3) putting a log normal prior on the a's and

running the 4-step procedure. When none of these gave as good results as

running to convergence, several modifications were tried to increase the speed

of running to convergence. These additional methods were: 4) adding a log

normal prior to the a's and running to convergence; 5) adding extrapolation to

speed up the run to convergence; and 6) & 7) obtaining initial item parameter

estimates by running to convergence with the examinees grouped into a small

number of groups and then running the 4-step procedure. Finally, an eighth

method put a prior on c to improve the poorly estimated c's. Each procedure

will be discussed in detail.
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1) Using Conventional Item Statistics to Get Initial a Estimates.

Stocking showed in her study that using the true item discrimination

values as starting values for the a's gave better parameter estimates than

using the default value of one for the a's. This suggests that better initial

starting values for the a's would improve the final item parameter estimates.

Lord (1980) gives approximations to the item discrimination and difficulty

parameters, provided c is 0, that are computed from the r-biserial and the

observed proportion correct. Schmidt (1977) gives Urry's modifications to

these equations to correct for guessing. These formulas hold only if the unit

of measurement for 0 has been chosen so that the mean of 8 is 0 and the

standard deviation is 1 and 8 is normally distributed in the group tested.

Ia addition, the approximations can fall short of accuracy when the test score

x and 8 have differently shaped distributions.

The initial estimate f,,r a is given by the following formula

where

Pie-
371Pre

/ r
PieyPiQi

/
Pie (1-c1),(yi)

(3)

(4)

Pie is the point biserial correlation between the binary item score and

the latent trait, 8 . The point biserial is attenuated by guessing. To the

extent taat the number-right score x is a measure of ability 8, pix, the

AO
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product-moment or point-biserial correlation between item score and x, can be

used as an approximation to pip,

pm is the correlation between the normally distributed dimension

underlying the item and the latent trait 8 .

.(yi) is the ordinate at yi that cuts off the area Pi of the

standardized normal curve.

PI is the observed percent correct.

ni

Pi
1 -c

is the observed percent correct adjusted for guessing.
i

An upper bound of 1 was placed on the computation of the biserial correlation.

In addition, the initial a estimates were not allowed to exceed the maximum

value for a specified by the user.

2) Eight-Step Procedure

Since running the program to convergence gives the same results

regardless of the starting value for the a's, will simply running the 4-step

procedure for eight steps give acceptable results? Instead of repeating the

4-step procedure twice, steps 1 and 2 were repeated three times and then steps

3 and 4 were executed. This was done to avoid running to the tight

convergence criterion of steps 3 and 4 in the middle of the estimation

procedure.

3 & 4) Log normal prior on a for the 4-step and the Run to Convergence.

In Stocking's study, the problem seemed to be primarily with the

estimation of the a's. Consequently, a prior on the a's might improve the

estimation of the a's in the 4-step procedure. The prior tried was a

16
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`floating' log normal prior as is used in the BILOG estimation program

(Mislevy and Bock, 1983). The parameters of the prior are and e. , the

location and dispersion. The ea can be specified by the user or set to a

default value of .5. µa is the. mean of the log a's and is recomputed at the

end of each stage Or it can be specified by the user and fixed. The criterion

function in equation 2 becomes

1 ( lna-IA )2

OeifIt
(5)

The las is adjusted by the standardization of the abilities at the end of each

stage. This method was tried with the 4-step procedure and with the run to

convergence method.

5) Convergence method with extrapolation

As this study progressed it became obvious that running to convergence

produced the best results in terms of reproducing the true parameters.

However, running to convergence has always been a slow and expensive

procedure. In addition, there is sometimes the problem of a's becoming

unreasonably large in running to complete convergence. Consequently, several

modifications of running to convergence were tried. The first was using

extrapolation on the item parameters to speed convergence. The same

extrapolation method was used as had previously been used in the 4-step

procedure on groups of b's, only now it was applied individually to the a's

and c's as well as to the b's. A logit transformation was done on the c's and

a log normal transformation was done on the a's before extrapolation. After

17
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extrapolation, the parameters were transformed back. No extrapolation was

attempted unless the absolute change in the item parameter was monotonically

decreasing. Each item parameter was extrapolated independently of the other

parameters for that item. An absolute limit was put on the amount any

parameter could change by extrapolation. In addition, no parameter could

change by more than nine times the amount that it changed in the previous

stage. Extrapolation was done every four stages after the maximum difference

between the item response functions between two successive stages had become

less than .01 and, if no prior was placed on c, the common c value had

converged.

6 and 7) Convergence Method with Grouping

Two other methods were tried that involved grouping the abilities after

the first estimation of abilities and running to convergence using the grouped

abilities. The estimated item parameters were then used as initial starting

values for the 4-step procedure. The reason for running the 4-step procedure

after the grouped run to convergence is that the grouping tends to produce

slightly underestimated a's. Two different groupings were tried. One grouped

the examinees into 100 centiles with an equal number of examinees in each

group. This results in groups with a narrow ability range in the middle of

the ability distribution but with a wide ability range in the tails of the

distribution. The other grouped the examinees into 100 equally spaced groups

between -3 and 3 on the ability scale. Ability estimates outside of this

range were put in the appropriate extreme group. This grouping allows for

more groups in the tails of the ability distribution.

16
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8) Prior on c

For some items, the item response function becomes asymptotic in a

region of the ability distribution where there are few or no examinees. The

ability level where the IRF becomes asymptotic is approximately equal to

b-(2/a). After the c's have been estimated for two stages, for items with

b-(2/a) less than some specified ability level below which there are few

examinees, LOGIST fixes the c at a common c value that is then estimated by

maximum likelihood. Thus, for items with c fixed, the c depends on the other

items that are also fixed.

Another method of controlling the estimation of c for items where there

is little information about c contained in the data is to adopt a Bayesian

approach of controlling c by the imposition of a prior distribution. This

prior distribution formally incorporates our beliefs about reasonable values

of the c parameter. The prior distribution used was a beta function as

implemented in BILOG (Mislevy and Bock, 1983). The beta function is

1
cg-1(1-0

B(ce, ft)
(6)

The parameters a and 0 are determined as follows. The mean of the beta

distribution is set equal to the mean of the c's, F . Thus,

(7)

The weight that is given to the prior can be expressed in terms of the number

in a hypothetical group of low ability examinees, N. .

4 r^
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a+A=.(1V_I-2) (8)

Solving these two equations for alpha and beta gives

a= (N...+2) (9)

p....(pL.+2)(1-a) (10)

N controls how tight or loose the prior is. For future reference, define

N!,=?1_,+2 . F can be computed at the end of each stage or fixed at some user

specified value. If it is computed, then the poorly determined c's will

depend on the c's of the other items included in the calibration. If c is

fixed, the poorly determined c's will depend on the value assigned to it. For

any item, the estimated c will depend upon the prior to the degree that there

is little information in the data with which to estimate c.

Convergence Criterion

It was necessary to change the convergence criterion twice during these

runs for the methods that involved running to convergence. The original

convergence criterion of some minimum percent change in the criterion function

created problems. For three of the datasets used in Stocking's study, in the

straight run to convergence after forty stages the criterion function was

still changing by more than three percent, and the decrease in the percent

change between stages was very small. For example, for one of the datasets

the percent change in the criterion function for stages 48 to 54 were 3.61,

3.51, 3.44, 3.28, 3.20, 3.08, 3.04. The reason for this extremely slow

convergence is that there were several items with a at the maximum a. The

ti
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standardization would increase the maximum a by a small amount. The a's at

the maximum would then increase to the revised amount, and so the criterion

function would increase by a small amount. This problem was not removed by

putting a prior on a. For the same test with a prior on a, the percent change

in the criterion function was 1.46, 1.34, 1.22, 1.14, 1.13 for stages 48 to

54.

Although the criterion function was increasing by more than the

convergence criterion, the estimated item response functions were changing

very little in the region of ability where the examinees were located.

Consequently, the convergence was redefined to be the maximum change between

the fitted IRF's within a stage. This change between the fitted IRF's was

computed for theta values of -2, -1, 0, 1, and 2. The procedure was

considered converged when the maximum difference between the estimated IRF's

was less than .0005. A couple of datasets had problems with this criterion as

the change within a stage would compensate for the adjustment by

standardization so that the change across stages would be extremely small but

the change within a stage would be larger than the convergence criterion. The

final convergence definition chosen was that the maximum difference in the

IRF's across two stages was less than .0005.

Data

Since the problems with LOGIST were discovered in Stocking's study, all

methods used in this paper were tried on the four sets of artificial data used

in that study. Each test contained 100 5-choice items and were taken by 3000

examinees. The true c's for all items were set to .15. This value was chosen

2
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based on the observation that in practice c's are usually estimated as smaller

than the probability of a correct answer based on random guessing. The true

b's were chosen randomly from a rectangular distribution with a range of -2.5

to 2.5. The true a's were chosen to be within the range of .5 to 2.5, but with

different correlations with the true b's for each test.

These correlations varied as follows:

1) For test Si, the population correlation between true a and true b was

+.8, the sample correlation was +.76.

2) For test S2, the population correlation was -.8, the sample correlation

was -.76.

3) For test S3, items with difficulty less than zero had a population

correlation with item discrimination of -.8. Items with difficulty greater

than zero had a population correlation with item discrimination of +.8. The

overall sample correlation was .08.

4) For test S4, items with difficulty less than zero had a population

correlation with discrimination of +.8, and items with difficulty greater than

zero had a population correlation with discrimination of -.8. The overall

sample correlation was .00.

These correspond to the datasets labeled Cl through C4, respectively, in

the Stocking study.

A calibration sample of 3000 simulees were chosen from a rectangular

distribution of true ability from -2.5 to 2.5. The population mean and

standard deviation were 0 and 1.44, the sample mean and standard deviation

were -.01 and 1.46. A separate criterion or cross-validation sample of 3000

simulees was chosen from the same distlibution and had a sample mean and
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standard deviation of -.03 and 1.45. Item response data for each test were

generated for each simulee in each sample. For the calibration sample, these

data were used to obtain the item and ability parameter estimates from LOGIST.

For the cross-validation sample, these data were used to obtain only ability

estimates using the item parameters estimated in the LOGIST run on the

calibration sample.

In addition to this data, four more sets of data were generated to

simulate real tests by first calibrating actual test data on LOGIST6

(Wingersky, et al, 1988) and then using the estimated parameters as the true

parameters to generate item responses. Since there were actual responses

associated with the true abilities, items not reached by the real examinee

were considered not reached for the simulated examinee. Since LOGIST ignores

`not reached' items, degradation in the calibrations due to not reached items

resulting in a sl,rter test will appear in the results. The total sample of

examinees was split into two random halves. One half was used to generate the

item responses for the calibration of the items, the other half was used to

generate the item responses for the validation sample.

The four real tests used were:

1) R1, a GRE quantitative test containing 60 items and taken by 2264

examinees.

2) R2, an SAT math test plus equating section containing a total of 85

items and taken by 3015 examinees.

3) R3, an SAT verbal test plus equating section containing a total of

130 items and taken by 2744 examinees.

4) R4, a TOEFL section containing 58 items and taken by 2915 examinees.

0 0
4, 0
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In comparison to tests S1 to S4, the correlations between the true a and

b parameters were .63 for R1, .62 for R2, .01 for R3, and .37 for R4.

Analysis

Each of the eight datasets were calibrated using the eight new

procedures, the 4-step procedure, and the run to convergence. The estimated

parameters were transformed to the scale of the true parameters using the

method which minimizes the squared difference between the two test

characteristic curves, as described in Stocking and Lord (1983). The

transformed item parameter estimates were then used to estimate abilities for

the validation samples.

Because of the numerous methods involved, the following abbreviations

were used for the different methods. The 4-Step procedures are referred to as

the automatic procedures, as the default automatically used by the program was

the 4-Step procedure.

Abbreviation

or code Method

4 Automatic 4-Step procedure currently used in LOGIST.

r Automatic 4-Step procedure where the initial a's are

computed from the r-biserials and observed

proportion correct.

A Automatic 4-Step prof dure with a log normal prior on

the a's.

0
4
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8 Automatic 8-Step procedure. This is a procedure with

steps 1 and 2 of the 4-Step procedure repeated

three times and then steps 3 and 4 of the

automatic procedure are done.

b Run to convergence with a log normal prior on a.

C Run to convergence.

E Run to convergence with extrapolation of the

item parameters.

First a run to convergence with extrapolation is done

with the abilities grouped into 100 intervals of

equal width between -3 and 3 on the ability

scale. This run is then followed by the

4-step procedure.

First a run to convergence with extrapolation is done

with the abilities grouped into 100 intervals

where the abilities are sorted and grouped into

centiles with one percent of the examinees in

each group. This run is then followed by the

4-step procedure.

P Prior on c was added to the run to convergence with

the abilities grouped into 100 intervals of

equal width between -3 and 3, followed by the

4-step procedure.
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The: estimated item parameters were evaluated by 1) comparing the

estimated parameters to the true parameters, 2) comparing the fitted item

response functions to the true item response functions, and 3) comparing

abilities estimated with the estimated item parameters to abilities estimated

with the true item parameters on a separate validation sample.

The following statistics were computed for comparing each estimated item

parameter to the corresponding true item parameter for the a's, b's and c's.

1) TL,' correlation between the estimated and the true parameters. For the

c's, no correlation was computed for the S tests since all of the true c's

were equal. 2) The bias, which is the estimated parameter minus the true

parameter, averaged over all items. 3) The root mean square error, RMSE,

which is the square root of the average squared differences between the

estimated and the true parameters. These statistics for all of the methods

for all of the tests are given in Table 1.

Insert Table 1 about here

Since different combinations of a, b and c can produce similar item

response functions in the range where there are examinee abilities, comparing

the estimated and true item response functions in this range may be more

meaningful than comparing the individual estimated and true tem parameters.

The following statistics comparing the estimated item response functions to

the true item response functions were computed: 1) ASD, the unweighted average

signed deviation between the two curves, 2) RMSD, the square root of the

average unweighted squared deviation, 3) BIAS, the average weighted signed
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deviation and 4) WRM!,D, the square root of the average weighted squared

deviation. ASD and RMSD were computed over equally spaced abilities between

-2.5 and 2.5 for the S tests and between -3 and 3 for the R tests. The

smaller range was used for the S tests since the true abilities spanned only

this range. BIAS and WRMSD were computed over equally spaced abilities between

-3 and 3 and were weighted by the expected number of examinees for the

appropriate segment of the ability distribution assuming the abilities to be

normally distributed with a mean of 0 and a standard deviation of 1. This

gives four statistics for each item. The individual statistics were plotted

by item, where the items were ordered by true difficulty, to see whether

systematic differences occurred at different ability levels. These plots were

too numerous to include in this paper, but are available from the author.

The mean and standard deviation of each of these statistics were computed

for each estimation method for each test. Figure 1 contains plots of the means

for the automatic methods plus the run to convergence method. Figure 10

contains the plots of the means for the convergence methods. The scale for

the y-axis in Figure 10 is half that in Figure 1. These figures contain four

plots, one plot for each statistic. Each plot contains the means for each

test with a dotted .one separating the tests and the test identification

written below the x-axis. A point is plotted as a bm. containing 'ae code for

the method with lines extending one standard error of the mean from thc center

of the box.

Another criterion for evaluating the methods is to compare abilities

estimated with the estimated item parameters to abilities estimated with the

true item parameters. Comparing these two estimated abilities removes from

r.,"1
4. I
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the comparison any error caused by the maximum likelihood estimation. The

abilities were estimated on separate validation samples. The residuals

between these two estimated abilities were grouped on the true abilities into

intervals of .2. The median residual for the group and the lower and upper

limits of a non-parametric two tailed 5% confidence band around the median,

based on a method by David (1981), were plotted.

Figures 2 through 9 contain the plots of the medians for the automatic

methods and for the run to convergence with each test in a separate figure.

Figures 11 through 18 contain the plots for the convergence methods. The

scale for the y-axis in Figures 11 through 18 is half the scale for the

y-axis in Figures 2 through 9. For each ability group, the medians for the

methods being compared are plotted in a separate position on the x-axis. The

symbol for the method plotted is printed just below the x-axis. The ability

groups are separated by a dotted line with the true ability printed beneath

each group. The number of simulees in each group (N) is also printed. Due to

this spreading of the points, the plot is broken into three sections. The top

section contains the low abilities, the middle section contains the middle

abilities, and the bottom section the high abilities. For the S tests, the

groups were of uniform size, but for the R test the groups in the extremes

were quite small. No confidence limits were computed if there were less than

four examinees in a group.

Insert Figures 1 to 18 about here
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Results

The discussion of the results will be broken into two sections. First the

automatic methods will be compared to each other and to the run to

convergence. Then the convergence methods will be compared to the run to

convergence. The run to convergence was used as the criterion to judge the

other methods since, for the most part, this method gave the best parameter

estimates. Each method will be evaluated separately.

Method 4, the current four step procedure.

How bad is the current 4-step procedure (Method 4) that has been used

extensively since 1976 compared to running to convergence (Method C)?

The statistics f'r comparing the item parameters for these two methods

are given in Table 1. kor the S tests, Method C gave better results than

Method 4 with a few exceptions. For the R tests, the statistics for the two

methods were nearly the same. Method C gave higher correlations for the a's

for two of the R tests, but slightly lower correlations for the other two.

The largest differences between the two methods were for Ri. In looking at

these statistics, Method C is not much better than Method 4 for tests that

simulate real data, the R tests.

Figure 1 shows that Method C gives better fitting item response functions

than Method 4. Except for the ASD, the difference between Method C and Method

4 was a lot less for the R tests than for the S tests. That the difference

between the two methods was greater for the ASD than for the BIAS for the R

tests indicates that Method 4 had problems in the extremes of the ability

distribution. The plots of the statistics ordered by difficulty confirm this.
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This is also confirmed by Figures 2 through 9, comparing the estimated

abilities. Method 4 is the first procedure in a group, Method C the last.

For the S tests, Method C gave definitely better results. For the R tests,

the results for Method C were about the same or only slightly better than the

results for Method 4. Rarely, as in R2, for abilities at -1.5 and -1.3,

Method C did slightly worse than Method 4. For the R tests, throughout the

middle ability range between -1 and 1, Method C and Method 4 agreed very well.

Overall, the Method 4 results were closer to the Method C results for the R

tests than for the S tests.

Method r, using conventional item statistics.

Does computing the initial a estimates from the conventional item

statistics (Method r) give better estimated parameters than using the default

values of 1 for the initial estimates?

In the comparison of the estimated item parameters given in Table 1,

Method r gave lower correlations than Method 4 for the S tests. However, for

the R tests the correlations were slightly higher. For the bias and RMSE,

Method r gave higher values than Method 4 for the S tests, but lower values

for the R tests. The detailed plots by item in the supplement to this paper

show that Method r gave poorer fitting IRF's for the easy items than the other

automatic methods. In Figure 1, comparing the item response functions, except

for tests S3 and S4, Method r produced better fitting IRF's than the other

automatic methods. For the R tests, Method r gave almost as good results as

Method C.
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In the comparison of ability estimates, for the S tests, Method r gave

very poor lower ability estimates compared to the other automatic methods.

However, for the R tests, again Method r gave better ability estimates than

the other automatic methods, but not as good as Method C. The reason for this

discrepancy between the results for the S tests and the results for the R

tests is that using the conventional item statistics to approximate the item

characteristic curve parameters assumes that the abilities are normally

distributed. This was approximately true for the R tests, but was not true

for the S tests, where the abilities have a rectangular distribution.

Although Method r gave better parameter estimates than Method 4 for the R

tests, it gave worse parameter estimates for the S tests.

Method A, prior on a

Stocking (1989) found that the main problem in the estimation procedure

seemed to be with the a parameters. Would the estimated parameters behave

better if the a's were controlled by a log normal prior with the mean

estimated and the variance fixed? The mean of the log normal prior was set to

the mean of the log of the a's at the end of each stage. The standard

deviation was fixed at .5 at first. On the first dataset calibrated, several

a's tried to go to infinity, so the value was reduced to .4. This value kept

all of the a's within bounds for all of the tests except R4. For this test, a

value of .3 was necessary to prevent any a's from approaching infinity.

In comparing the item parameter estimates, the item response functions and

the estimated abilities, the Method A results were nearly identical to the
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results for Method 4. The lack of improvement in results does not warrant the

additional assumptions and subjective decisions required by the prior.

Method 8, eight steps.

Running the four step procedure for four more steps (Method 8) should

give better item parameter estimates without the cost of running to

convergence. Are the improved item parameter estimates close to the Method C

estimates? Table 1 shows that the item parameter estimates were improved over

Method 4 estimates. Figure 1 shows that Method 8 gave slightly improved

results over Method 4, but still not nearly as good as Method C for the S

tests.

In conclusion, Method C generally produced better item parameter

estimates than any of the automatic methods. The improvement in the parameter

estimates was greater for the S tests than for the R tests.

Convergence Methods

While running LOGIST to convergence gave better results than any of the

automatic procedures, it was approximately twice as slow as the 4-step

procedure and had the problem of some of the a's tending towards infinity. A

comparison of the execution times for Method 4 and the convergence methods is

given in Table 2. Table 2a gives the execution times. Table 2b expresses the

times in terms of the percent of the time for Method 4. Attempts to increase

the speed of Method C included extrapolation, grouping the abilities, and

putting a prior on the a's. In total, there are six convergence methods,

Methods C, E (extrapolation), = (grouping with equal interval width), %

3 2
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(grouping into percentiles), b (prior on a), and P (prior on c). Methods C,

b, E, = and % will be evaluated in this section. Method P will be evaluated

in the following section.

Insert Table 2 about here

The runs to convergence for the S tests both with and without a prior on

the as used the percent change in the criterion function as the convergence

criterion. The runs to convergence with and without a prior on the a's for

the R tests were run with the convergence defined by the maximum change within

a stage between the fitted IRF's computed for abilities at -2, -1, 0, 1, and

2. The run to convergence with extrapolation and the two grouping methods

were run with convergence defined as the maximum difference between the

estimated IRF's from one stage to the next. The convergence criterion was

.0005.

Method E, extrapolation of item parameters.

Extrapolating the item parameters (Method E) improved the speed of

convergence over Method C and produced nearly identical results to those for

Method C. However, for most of the tests, the procedure was slower than

Method 4. This is shown in Table 2.

Method b, running to convergence with a prior on a.

Running to convergence with a log normal prior on the a's (Method b) did

not produce as good item parameter estimates as those from Method C. This is
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shown in Table 1 and Figure 10. The ability estimates were also not quite as

good. The prior did not improve the speed of convergence.

Methods = and %, grouping examinees.

These two grouping methods get initial values for the item parameters by

grouping the abilities into coarse groups and running to convergence . The

four step procedure is then run to correct for underestimation of the a's

produced by the grouping. First these methods will be compared to Method C

and then they will be compared to each other.

In comparing the item parameter estimates, grouping gave generally

slightly higher correlations between estimated and true parameters. Grouping

slightly increased the bias in the a's for the S tests and slightly decreased

the bias in the a's for the R tests. Grouping decreased the RMSE for the b's

and c's. In comparing the item response functions in Figure 10, for most of

the tests grouping improved the results compared to Method C. S2 was an

exception; grouping gave slightly worse results. Compared to Method C,

grouping improved the lower ability estimates for tests S2 and S3, markedly.

However, for S2, grouping did not produce high ability estimates that were as

good as those produced by Method C. In comparing Method = to Method %, Method

= gave slightly better parameter estimates in most cases.

For five of the tests, grouping ran in considerable less time than Method

4, as is shown in Table 2. However, for one of the tests, grouping increased

the time by 26 percent.

Since Method = produced nearly as good or better results than Method C

in less computer time, Method = has been incorporated into LOGIST. One can

34
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think of this method as running a step 0, which is a run to convergence with

the examinees grouped into 100 intervals from -3 to 3 on the basis of the

first maximum likelihood ability estimate. This step 0 gives initial item

parameter estimates for the 4-step procedure. However, this step 0 is not

without its problems. There is still the problem with a's restricted to the

maximum value slowly increasing because of the standardization and causing the

step to take a long time to converge. Since step 0 is simply to get good

initial parameter estimates, it has been restricted to forty stages in length.

This was more than enough for all of the tests run in this study to converge.

Prior on c

Having chosen a method that gives good parameter estimates, (i.e.

Method =), can the estimates for items where the IRF reaches a lower

asymptote in a region of the ability distribution where there are few to no

examinees be improved by putting a beta prior on the c's? For these items, at

the end of the third stage of step 0, Method = fixes the c for the remainder

of Step 0 at a common c value if b-(2/a) is less than some criterion. The c's

for all items are estimated again in stages 2 and 3 of step 2. At the end of

stage 3 of step 2, the c's for items with b-(2/a) less than the criterion are

fixed at a common c. The criterion used in all of these runs was -4. The

common c is estimated and depends on the other items with c fixed.

The program using Method = was modified to put a beta prior on c with

the mean of the prior either estimated or held fixed. All datasetra were run

with a prior on the c with the mean of the prior estimated and with Ar.!. at

20. le. controls the amount that the prior controls the c estimates. A

large value for Ar._,, will tightly control the c's; a smaller value will give

35



Improvements to LOG/ST

33

the c's more freedom. In lookiag at four sets of real data, a value of 20

gave a standard deviation for the beta distribution close to the observed

standard deviations of the estimated c's.

In Figure 10 containLng the plots of the average IRF statistics, it can

be seen that the prior on c (Method P) improved the estimated parameters for

tests S2 and S3. For the other tests, particularly for R1, the estimated

IRF's were worse.

In Figures 11 through 18, the residual ability plots, the point

corresponding to a prior on c is the last point in each group. It should be

compared with the point preceding it for Method = . For Si, the prior

produced higher residuals for the lower abilities, although it reduced the

residuals for the higher abilities. However for S2 and S3, the prior

dramatically improved the residuals for the lower abilities and slightly

improved the residuals for the higher abilities. For S4 the prior gave larger

residuals for the lower abilities. For R1, the prior gave larger

residuals throughout the ability range. For R2 and R3 the prior improved the

ability estimates. However, for R4 the prior improved the estimates for the

high abilities but not for the lower abilities.

Figures 19 to 26 contain the plots of the residuals for the item

parameters and IRF statistics for Method P and Method =. All values are

plotted against the true b-(2/a). The prior should improve the estimates for

the lower values of b-(2/a). The results for no prior on c are plotted in the

first column, for a prior on c in the second. The IRF statistics were

included to show any effect that the different parameter estimates might have

on them. For the S tests, the prior on c improves the estimates for the

36
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poorly estimated c's but does not eliminate the scatter for the moderately

poorly estimated c's. For R1, the prior on c improved the estimates for the

items with poorly estimated c's but gave worse parameter estimates for some of

the other items. For R2, it improved the c estimates for the really poorly

estimated c's, but increased the scatter slightly for some of the moderately

poorly estimated c's. For R4, the prior didn't do as well for the poorly

estimated c's.

Insert Figures 19 through 26 about here

For the comparison of the estimated parameters to the true parameters in

Table 1, compare the line Prior on c to the line immediately above it,

Grouping, Equal Int. On the plus side, the prior on c: 1) improved the

correlations for a,b, and c for all tests except R1 and R4, 2) reduced the

bias and RMSE for a for all tests, 3) reduced the RMSE for b for all tes:.s

except R1 and R4 and 4) decreased the RMSE for c for all tests except Sl, R1,

and R4. On the negative side, the prior on c increased the magnitude of the

bias in b for all tests except S4, R2, and R4 and increased the magnitude of

the bias in c for all tests except S2, S3 and R2. Except for the bias in a,

all of the statistics for R1 were worse with the prior on c than without.

To understand why the prior on c produced such poor results for R1, two

more calibrations were done. In one calibration, Ar!.. was set to 40. This

did not improve the results. In the other calibration, four items with the

highest estimated c's were removed to see whether these were causing an

unusual distribution of the c's. The items removed had c's greater than .27.

37



Improvements to LOGIST

35

In the calibration with four item removed and AT!.. equal to 20, the mean c

went to the minimum of .05 and the procedure stopped. le., was increased to

40 and i le calibration finished. Calibrating without the four items also

failed to improve the results. However, these two calibrations enable one to

look at the effect of two different AL% 's on the parameter estimates and

the effect of removing a few items on the calibration of the remaining items.

The comparison of these parameters estimates are shown in Figure 27. The

left column of plots compares the parameters estimated with AC. at 20 to

the parameters estimated with AT:. at 40. All points are plotted against

the true b-(2/a). With Ar.!.. at 40, the b's and the c's were higher for most

of the items. The right column of plots compares the parameters estimated

with the four items removed to the parameters estimated with all of the items.

Both sets of parameters were calibrated with le. at 40. For most of the

items, both the b's and the c's were higher when all of the items were

calibrated. In contrast, Figure 28 contains the comparison of the parameters

estimated with no prior on c with the four items removed to the parameters

estimated with no prior on c with all items. The two sets of estimated

parameters agree better than whet; the prior on c was used. it is important to

note that if the mean of the prior on c were held fixed, removing the four

items would not have as much effect on the other items.

Insert Figures 27 and 28 about here
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Common Item comparison

Frequently the parameters for a block of items will be estimated in two

separate calibrations containing other sets of items. It is not unusual for

an item to have c estimated in one calibration and have the c fixed at the

common c value in the other calibration if b-(2/a) is close to the criterion

for fixing c. In addition, the common c value depends on all items with c

fixed at this value and may be different for the two calibrations. A prior on

the c will remove the discontinuity at the criterion for fixing c. However,

if the mean of the prior on c is estimated, it depends on the items in the

calibrations and may differ for the two calibrations. One way to avoid this

problem is to fix the mean of the prior in one calibration to the estimated

mean in the first calibration. This approach can also be applied to

estimation without a prior on c by fixing the common c value in one

calibration to the estimated common c value in the first calibration.

To evaluate whether the prior on c gave more consistent parameter

estimates, four sets of data were calibrated, both with and without a prior on

c. Each set were based on responses from two groups of examinees. One group

took Form 1 of the test and an equating section. The other group took Form 2

and the same equating section. Two sets of real SAT data were used; a Verbal

test and a Math test. In addition two sets of simulated data were generated.

The true parameters for this simulated data were o,tained from a concurrent

calibration of the real data, where the two forms were calibrated in one

LOGIST run. This put the true parameters for both forms on the same scale.

The real data will be referred to as Math and Verbal. The artificial data

generated from the calibration of the real math data will be referred to as
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R2. The artificial data generated from the calibration of the real verbal

data will be referred to as R3. Form 1 for these two tests is the same as the

R2 and R3 teats discussed in the previous sections.

Each form was calibrated separately. For the artificial data, the

estimated parameters were transformed to the scale of the true parameters

using all items and the transformation procedure developed by Stocking and

Lord (1983). For the real data, Form 2 was transformed to the scale of Form 1

using the common items with the Stocking and Lord transformation method.

Form 1 was calibrated with a prior on c and without a prior on c. Form 2

was calibrated in four ways: 1) without a prior on c with the common c

estimated, 2) without a prior on c with the common c fixed at the common c

value estimated for Form 1, 3) with a prior on c with the mean of the prior

estimated, and 4) with a prior on c with the mean of the prior fixed at the

mean estimated for Form 1.

Table 3 contains the statistics comparing the estimated item parameters

to the true parameters for the common items for the artificial data for Form 1

and all calibrations of Form 2. "Fix comc" indicates the calibration with no

prior on c where the common c value was fixed at the value estimated in the

Form 1 calibration. The prior improved the results for R2 but not for R3.

Insert Table 3 about here

Table 4 contains the statistics comparing the item parameter estimates

between Form 1 and Form 2 for the common items. For R2, the prior improved

the correlation, bias and RMSE for b and c. For R3, the prior degraded the

Lit)
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correlation and bias for c. For Math and Verbal, the results with and without

the prior were nearly the same.

Insert Table 4 about here

Fixing the mean of the prior slightly improved the c estimates with the

prior for R3 and Verbal but made almost no difference for the other tests.

With no prior on c, fixing the common c made almost no difference in the

estimates for the two calibrations. In replicating item parameters in two

calibrations. the prior either had no effect or gave only a slight

improvement.

The prior on the c improved the results for most of the tests. However,

for R1 the prior on c produced parameter estimates that were not as good as

the estimates produced without a prior. While adding the prior solves some

problems, others are created. Without a prior on c, only the c's fixed at the

common c were directly affected by the other items in the calibration and

then only by those other items also fixed. With a prior on c and the mean c

estimated, the estimated c's for most of the items are affected by the other

items. The prior on c does not remove the scatter for moderately poorly

estimated c's, where b-(2/a) is between -2 and -4, that occurs without a pr;or

on c. Fixing the mean c would remove the effect of the particular group of

items being calibrated on the estimates but requires some prior knowledge of

an appropriate value for the mean c. The prior on c also requires specifying

some value for Ar.!.. . Since the prior on c cannot be recommended without

41
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reservations, a program option was added so that the user could choose whether

or not to put a prior on c.

Comparison of Method = Estimates to Method 4 Estimates

The method that gave the best results in a reasonable amount of computer

time is Method =. This method gives different item parameter estimates than

the current method, Method 4. To give an idea of how different the estimates

are, residuals from a comparison of the estimated parameters from the two

methods are plotted in Figures 29 to 32 for the artificial data and in Figure

33 for the real data. The tests are plotted two tests per page. For each

teat, the residuals between the parameter estimates are plotted against the

Method 4 estimated parameters. The residuals for c are plotted against the

Method 4 b-(2/a). The bottom plot contains the test characteristic curves for

the two methods and, for the artificial data, for the true parameters. The

test characteristic curves are scaled to length one. The most noticeable

difference is that the more discriminating items have higher a estimates when

estimated using Method =. This makes the test characteristic curves steeper

for the new meLhod. The plot of the residuals for the b parameter indicates a

nonlinear relationship between the parameters estimated with the new method

and the parameters estimated with the 4-step procedure.

Insert Figures 29 through 33 about here
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Conclusions

Stocking (1989) discovered that the automatic procedure used by LOGIST

produced different item parameter estimates when the initial a's were set to

the true values than when the default constant of one was used. However, when

the automatic procedure was bypassed and LOGIST was run to convergence, the

different initial a values converged to the same item parameter estimates.

Running LOGIST to convergence is a time consuming and costly procedure. There

is also a problem with a's tending towards infinity. This paper investigated

possible revisions to the program to improve the final item parameter

estimates without the cost of running to convergence.

The method that gave the best results in a reasonable amount of computer

time was a method that obtained initial item parameter estimates by grouping

the abilities into 100 groups between -: and 3 and running to convergence.

The automatic 4-step procedure was then run with these initial item parameter

estimates. This method has been incorporated into LOGIST.

The new procedure gave item parameter estimates that are closer to the

true values than the current 4-step method. However, there is a definite

nonlinear relationship between the estimated item parameters for the two

methods after the parameters have been linearly transformed to the same scale.

Consequently, in an ongoing series of calibrations, switching to the new

procedure from the old 4-step procedure will produce a discontinuity in the

parameter estimates in the same manner as would be caused by switching from

LOGIST to BILOG.
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In addition, a prior on the c's was tried to see whether two problems

with the current procedure could be removed. The problems occur when the same

set of items is calibrated with different sets of other items in separate

calibration runs. One problem is that the estimated common c depends on the

items in the calibration with c fixed at the common c. The other problem is

that an item may be fixed in one calibration because b-2/a was slightly lower

than the cut-off criterion and estimated in another calibration because b-2/a

was slightly higher than the cut-off criterion.

The addition of a prior on c !..1proved the parameter estimates for most

of the tests. However, for one of the tests, the prior made the estimated

parameters worse. The beta prior on c with the mean of the prior estimated

makes most of the c estimates dependent on the other items being calibrated.

With no prior on c, only the c's fixed at a common c value are dependent on

the other items and then only on the items with c also fixed at the common c.

The prior on c only slightly improved the replicability of the estimated item

parameters when items are calibrated with other tests in separate calibration

runs. Since the results were not conclusive, an option was added so that a

user could specify that the program estimate the c's with a prior on c with

the mean of the prior either fixed or estimated or the program estimate c

without a prior with either the common c value estimated or fixed at a value

specified by the user. More experience needs to be acquired before a clear

recommendation can be made about using a prior on c.

The new LOGIST is called LOGIST7.
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Table 1

Summary Statistics Comparing Estimated Item Parameters to True Parameters

SI

Correlation

a b c a

Bias

b c a

RMSE

4 Step 4 0.802 0.996 -0.044 0.035 -0.024 0.237 0.147 0.050

4 Step, R-biserial r 0.686 0.991 -0.090 0.043 0.032 0.521 0.277 0.066

Prior on a, Auto. A 0.804 0.996 -0.052 0.038 -0.023 0.235 0.147 0.048

8 step 8 0.844 0.997 -0.013 0.021 -0.024 0.212 0.124 0.052

Prior on a, Cony. b 0.872 0.998 0.070 0.017 0.005 0.237 0.093 0.042

Convergence C 0.925 0.998 0.074 0.010 0.006 0.187 0.096 0.043

Conv. with Extrap. e 0.925 0.998 0.074 0.010 0.006 0.187 0.096 0.043

Grouping, Centiles X 0.935 0.998 0.074 0.002 0.001 0.177 0.082 0.031

Grouping, Equal Int.= 0.937 0.998 0.074 0.002 0.001 0.176 0.080 0.029

Prior on c P 0.935 0.999 0.063 -0.006 -0.010 0.171 0.071 0.031

S2

4 - Step 4 0.753 0.995 0.116 -0.063 0.012 .0.295 0.153 0.029

4 Step, R-biserial r 0.691 0.985 -0.087 0.031 0.026 0.360 0.342 0.056

Prior on a, Auto. A 0.749 0.995 0.113 -0.065 0.012 0.292 0.156 0.028

8 step 8 0.798 0.996 0.109 -0.052 0.013 0.272 0.140 0.036

Prior on a, Cony. b 0.881 0.997 0.096 -0.027 0.011 0.217 0.104 0.061

Convergence C 0.898 0.998 0.074 -0.020 0.009 0.197 0.101 0.061

Cony. with Extrap. e 0.896 0.998 0.072 -0.020 0.009 0.197 0.102 0.061

Grouping, Centiles X 0.890 0.998 0.096 -0.023 0.013 0.212 0.098 0.055

Grouping, Equal Int.= 0.900 0.998 0.099 -0.023 0.007 0.207 0.096 0.057

Prior on c P 0.930 0.999 0.089 -0.026 -0.004 0.178 0.077 0.030

S3

4 - Step 4 0.759 0.995 -0.105 -0.014 0.021 0.289 0.197 0.066

4 Step, R-biserial r 0.421 0.977 -0.180 -0.145 0.035 0.453 0.520 0.065

Prior on a, Auto. A 0.759 0.995 -0.114 -0.014 0.021 0.292 0.199 0.064

8 step 8 0.836 0.996 -0.022 -0.019 0.018 0.232 0.155 0.059

Prior cn a, Cony. b 0.873 0.997 0.070 -0.001 0.029 0.237 0.128 0.093

Convergence C 0.892 0.997 0.063 0.001 0.034 0.213 0.128 0.101

Conv. with Extrap. e 0.893 0.997 0.055 0.001 0.034 0.206 0.128 0.101

Grouping, Centiles X 0.911 0.998 0.083 0.002 0.022 0.214 0.101 0.079

Grouping, Equal Int.= 0.914 0.998 0.091 -0.001 0.018 0.217 0.101 0.076

Prior on c P 0.946 0.999 0.080 -0.017 -0.012 0.178 0.066 0.034

S4

4 - Step 4 0.919 0.999 0.117 0.011 -0.010 0.199 0.081 0.032
4 Step, R-biserial r 0.931 0.996 0.052 -0.020 0.025 0.205 0.140 0.050
Prior on a, Auto. A 0.921 0.999 0.121 0.008 -0.011 0.197 0.082 0.035

8 step 8 0.938 0.999 0.082 0.017 -0.009 0.170 0.073 0.033

Prior on a, Cony. b 0.948 0.999 0.090 0.015 0.009 0.169 0.082 0.052

Convergence C 0.943 0.998 0.061 0.028 0.009 0.159 0.091 0.052

Conv. with Extrap. e 0.942 0.998 0.062 0.027 0.009 0.160 0.090 0.052

Grouping, Centiles X 0.954 0.999 0.072 0.020 0.006 0.153 0.066 0.029
Grouping, Equal Int.= 0.954 0.999 0.073 0.019 0.005 0.154 0.067 0.029

Prior on c P 0.954 0.999 0.059 0.008 -0.012 0.146 0.063 0.029



Table 1 (Cont'd)

Summary Statistics Comparing Estimated Item Parameters to True Parameters

R1

Correlation

a b c a

Bias

b c a

RMSE

4 - Step 4 0.922 0.974 0.578 -0.011 -0.017 -0.027 0.124 0.282 0.116
4 Step, R-biserial r 0.929 0.972 0.613 0.028 -0.009 0.006 0.140 0.300 0.103
Prior on a, Auto. A 0.928 0.979 0.654 -0.016 0.011 -0.020 0.112 0.250 0.109
8 step 8 0.935 0.979 0.687 0.018 -0.001 -0.011 0.131 0.253 0.102
Prior on a, Cony. b 0.923 0.975 0.658 0.043 0.034 0.013 0.151 0.280 0.109
Convergence C 0.951 0.978 0.686 0.040 0.012 0.010 0.129 0.264 0.102
Conv. with Extrap. e 0.952 0.978 0.686 0.040 0.012 0.010 0.128 0.264 0.102
Touping, Centiles % 0.944 0.978 0.708 0.044 0.009 0.011 0.142 0.264 0.097
Grouping, Equal Int.= 0.944 0.978 0.698 0.043 0.012 0.012 0.141 0.260 0.098
Prior on c P 0.920 0.951 0.530 -0.004 -0.119 -0.050 0.151 0.423 0.109

R2

4 - Step 4 0.913 0.991 0.771 -0.038 0.014 -0.014 0.134 0.175 0.058
4 Step, R-biserial r 0.924 0.992 0.799 -0.021 0.018 -0.003 0.122 0.158 0.053
Prior on a, Auto. A 0.904 0.987 0.746 -0.043 0.030 -0.010 0.144 0.206 0.062
8 step 8 0.939 0.992 0.773 -0.009 0.001 -0.009 0.110 0.159 0.058
Prior on a, Cony. b 0.939 0.989 0.733 0.010 0.032 0.014 0.110 0.187 0.065
Convergence C 0.951 0.990 0.741 0.029 0.022 0.016 0.109 0.176 0.064
Cony. with Extrap. e 0.951 0.990 0.741 0.031 0.021 0.017 0.110 0.177 0.064
Grouping, Centiles % 0.949 0.990 0.743 0.028 0.024 0.018 0.110 0.174 0.063
Grouping, Equal Int.= 0.949 0.990 0.761 0.025 0.020 0.014 0.109 0.174 0.060
Prior on c P 0.951 0.992 0.779 0.004 -0.012 -0.007 0.100 0.161 0.055

R3

4 - Step 4 0.888 0.988 0.777 -0.010 -0.006 -0.007 0.126 0.205 0.067
4 Step, R-biserial r 0.886 0.988 0.771 0.003 -0.016 -0.006 0.128 0.208 0.068
Prior on a, Auto. A 0.888 0.986 0.762 -0.012 -0.003 -0.005 0.124 0.208 0.069
8 step 8 0.884 0.987 0.772 0.001 -0.015 -0.007 0.130 0.212 0.069
Prior on a, Cony. b 0.882 0.989 0.802 0.013 0.001 0.007 0.128 0.198 0.064
Convergence C 0.876 0.987 0.760 0.018 -0.007 0.004 0.136 0.216 0.070
Cony, with Extrap. e 0.875 0.987 0.760 0.020 -0.008 0.005 0.136 0a.16 0.070
Grouping, Centiles % 0.880 0.987 0.774 0.015 -0.013 0.003 0.134 0.214 0.068
Grouping, Equal Int.= 0.882 0.987 0.773 0.009 -0.013 -0.001 0.132 0.212 0.068
Prior on c P 0.888 0.990 0.786 -0.008 -0.015 -0.005 0.126 0.192 0.063

R4

4 - Step 4 3.945 0.996 0.872 0.003 -0.014 -0.017 0.091 0.130 0.047
4 Step, R-biserial r 0.934 0.995 0.886 0.051 -0.027 -0.004 0.138 0.129 0.039
Prior on a, Auto. A 0.935 0.996 0.874 -0.006 -0.008 -0.018 0.090 0.125 0.046
8 step 8 0.952 0.995 0.860 0.025 -0.028 -0.017 0.108 0.142 0.051
Prior on a, Cony. b 0.910 0.995 0.851 0.040 0.006 0.006 0.149 0.136 0.045
Convergence C 0.939 0.994 0.856 0.064 -0.011 0.008 0.155 0.143 0.045
Cony. with Extrap. e 0.939 0.994 0.856 0.061 -0.010 0.008 0.149 0.143 0.045
Grouping, Centiles % 0.942 0.995 0.880 0.053 -0.019 0.005 0.137 0.135 0.041
Grouping, Equal Int.= 0.942 0.995 0.880 0.050 -0.024 -0.004 0.136 0.134 0.042
Prior on c P 0.946 0.995 0.829 0.029 -0.054 -0.024 0.120 0.153 0.051
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4 Step

Table 2a

Time in Seconds on an 80386 - 20 MHZ.

Convergence Grouped

Convergence Extrap. Equal Int.

Grouped

Gentiles

S1 3477 na* 2851 2108 1994

S2 4467 na* 4782 2171 2235

S3 4654 na* 5255 2001 2144

S4 6417 na* 3494 1956 2052

RI 711 1479 823 973 953

R2 1563 2292 2042 1732 1672

R3 1512 4545 3324 2781 2854

R4 1504 4708 1493 1187 1157

Table 2b

Time Expressed as Percent of Time for the 4 Step Procedure

4 Step

Convergence

Convergence Extrap.

Grouped

Equal Int.

Grouped

Gentiles

Si 100 na* 82 61 57

S2 100 na* 107 49 50

S3 100 na* 113 43 46

S4 100 na* 54 30 32

RI 100 192 107 126 124

R2 100 147 131 111 107

R3 100 181 132 111 114

R4 100 313 99 79 77

na* - These were run on a different computer with a differert convergence criterion.



Table 3

Summary Statistics Comparing Estimated Item Parameters to True Parameters

Common Items in Form 1 and Form 2 for tests R2 and R3

R2

Correlation

a b c a

Bias

b c a

RMSE

F1 No prior on c 0.963 0.992 0.680 0.022 0.040 0.019 0.086 0.128 0.056
F1 Prior on c 0.961 0.996 0.850 0.004 0.019 0.006 0.086 0.093 0.037
F2 No prior on c 0.928 0.996 0.824 0.013 0.013 0.009 0.125 0.085 0.043
F2 Prior on c 0.921 0.997 0.869 -0.002 0.004 0.002 0.128 0.079 0.034
F2 No prior on c, Fix Comc 0.929 0.997 0.854 0.012 0.008 0.006 0.124 0.079 0.039
F2 Prior on c, Fix Mean 0.921 0.997 0.867 -0.002 0.005 0.003 0.128 0.079 0.034

R3

F1 No prior on c 0.934 0.990 0.749 -0.006 0.007 0.006 0.113 0.191 0.054
F1 Prior on c 0.940 0.992 0.723 -0.019 0.005 0.003 0.111 0.165 0.051
F2 No prior on c 0.969 0.991 0.874 -0.006 -0.014 -0.005 0.096 0.215 0.044
F2 Prior on c 0.965 0.993 0.818 -0.025 -0.029 -0.019 0.098 0.224 0.047
F2 No prior on c, Fix Comc 0.969 0.991 0.875 -0.007 -0.018 -0.007 0.096 0.217 0.044
F2 Prior on c, Fix Mean 0.968 0.993 0.849 -0.009 -0.006 -0.004 0.091 0.209 0.039



Table 4

Summary Statistics Comparing Form 2 Item Parameters to Form 1 Item Parameters

Common Items in Form 1 and Form 2 for tests R2 and R3, real Math and Verbal

Correlation Bias RMSE

a b c a b c a

R2

F2 No prior on c 0.894 0.993 0.704 -0.009 -0.026 -0.010 0.150 0.115 0.054

F2 Prior on c 0.887 0.996 0.817 -0.006 -0.015 -0.003 0.151 0.086 0.035

F2 No prior on c, Fix Comc 0.895 0.993 0.697 -0.010 -0.031 -0.013 0.149 0.119 0.055

F2 Prior on c, Fix Mean 0.887 0.996 0.817 -0.006 -0.013 -0.003 0.150 0.085 0.035

R3

F2 No prior oo c 0.886 0.980 0.659 0.000 -0.021 -0.011 0.172 0.293 0.070

F2 Prior on c 0.883 0.984 0.568 -0.007 -0.034 -0.021 0.167 0.282. 0.062
F2 No prior on c, rix Comic 0.886 0.979 0.657 -0.001 -0.025 -0.013 0.172 0.298 0.071

F2 Prior on c, Fix Mean 0.887 0.985 0.631 0.010 -0.012 -0.006 0.165 0.262 0.054

Math

F2 No prior on c 0.985 0.979 0.880 0.062 -0.016 -0.001 0.120 0.202 0.030

F2 Prior on c 0.984 0.980 0.882 0.064 -0.006 0.005 0.124 0.193 0.026
F2 No prior on c, Fix Comc 0.985 0.979 0.882 0.062 -0.012 0.001 0.120 0.199 0.029

F2 Prior on c, Fix Mean 0.984 0.980 0.882 0.064 -0.006 0.005 0.124 0.193 0.026

Verbal

F2 No prior on c 0.886 0.984 0.669 -0.048 -0.070 -0.027 0.174 0.264 0.075
F2 Prior on c 0.889 0.989 0.696 -0.044 -0.069 -0.024 0.167 0.231 0.058

F2 No prior on c, Fix Come 0.886 0.984 0.665 -0.045 -0.072 -0.028 0.174 0.265 0.076
F2 Prior on c, Fix Mean 0.888 0.988 0.724 -0.035 -0.059 -0.015 0.166 0.236 0.053
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Figure 1. Statistics comparing estimated IRFs to true IRFs averaged over all items for the
automatic methods and the run to convergence. The lines above and below the box plotted extend one
standard error of the mean from the center of the box.
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Figure 2. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test Si.
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Figure 3. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test S2.
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Figure 7. Median and 5% two-tailed confidence band of residuals between ability computed with
estimated item parameters and ability computed with true item parameters. Median and confidence
band conditional on true ability. Automatic methods and the run to convergence. Test R2.
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band condition& on true ability. Convergence methods. Test S4.
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Figure 25. Residuals between estimated and true item parameters and statistics comparing
estimated IRFs to true IRFs for the Method = with no prior on c and the Method P with a prior on c.
All results plotted against the true b-2/a. Test R3.
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All results plotted against the true b-21a. Test R4.
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